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EPIGRAPH

There’s a right tool for every job; and the right tool is Visegrips®.
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Everyone believes the results of the test except the man who performed it, and no one
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Rebar-couplers mechanically splice pairs of steel reinforcing bars, end-to-end;
they are used regularly in reinforced concrete construction. Epoxy-bonded couplers
are one available type, but have unique long-term performance considerations. The
adhesive material used in these couplers is a two-part, field-mixed, ambient-cure
epoxy system, originally designed for adhesive anchorage to concrete. Many of the
adhesive systems used for anchorage to concrete, including the system used with
adhesive-bonded couplers, are epoxy systems. The mechanical properties of these
types of epoxies have been shown to degrade over time, in the presence of moisture.

A variety of commercially available adhesive systems, for anchorage to concrete, were
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studied to assess their relative resistance to moisture-based degradation. The material
properties of two of the adhesive systems, both epoxies, and the performance of the
rebar-couplers were then measured over a fourteen-and-a-half-month period of
exposure to a variety of environmental conditions, including water immersion at a
range of temperatures. From these results, material degradation models were used to
predict the properties of the adhesive over the service life of the rebar-coupler. A
Finite Element Analysis (FEA) model was developed to simulate the tensile failure of
the epoxy-bonded rebar-coupler system and correlate degrading adhesive material

properties to changes in the coupler system’s behavior throughout its service life.
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1 Introduction

1.1 General Problems

Reinforced concrete is a composite material system consisting of two
components: concrete, and reinforcement. The concrete component is itself a
composite of Portland cement and aggregates. The Portland cement, through the
process of hydration, cures and solidifies the material; the aggregates, usually a
combination of sand and gravel, add strength and volume to the concrete.
Reinforcement is generally in the form of deformed steel reinforcing bars (rebars). In
practice, the rebars are placed and temporarily fixed into their final configuration, and
then the fluid concrete is poured around them; the concrete then cures, forming the
composite system. The reinforced concrete composite system is successful because
the concrete takes the majority of compression forces and is easy to place and form;
the rebars carry the tensile forces efficiently. However, it is often necessary to splice
rebars together to allow for continuity of tensile forces from one rebar to the next. The
most common method of splicing rebars together is to overlap them, creating what is
called a “lap splice”. However, lap splicing is not always desirable and so a variety of
mechanical rebar-couplers have been developed.

Epoxy-bonded rebar couplers are a type of mechanical rebar-coupler used in
reinforced concrete construction; they use an epoxy adhesive system to transfer load
between reinforcing bars. However, the introduction of the epoxy material into
reinforced concrete structures adds additional long-term performance considerations.

Although not all adhesives are epoxies, only epoxy has been used in bonded rebar-



